

Recent Progress in the Development of Predictive Capability for Small Fatigue Crack Growth

Chun H. Wang

Defence Science and Technology Organisation,
Melbourne, Australia

Defence Science and Technology Organisation

Overview

- Motivation and Context.
- Some Experimental Observations.
- Theoretical Considerations.
 - Correlating parameter;
 - Plasticity induced crack closure;
- Computational approach.
 - Grossly plastic deformation;
 - Strain gradient (notch plastic zone).
- Applications.
 - Crack growth through residual stress field.
- Conclusions.

Motivation and Context

Improvement over current engineering practice in life prediction

Prognosis Health Management

Integrated Detection and Assessment

NDI

Fracture / Fatigue Mechanics

Detection

- Find damage
- Locate and identify
- Quantitative characterization, input to Assessment/

automation

Motivation and Context

A brief history:

- 1955: First paper on fatigue crack growth using dislocation theory by Dr. Alan Head.
- 2. 1995: Long crack well understood and predictive tools (FASTRAN by Jim Newman).
- 3. 2015: Adaptive, 3D computational crack growth?

Challenges:

- Correlating parameter for small cracks (≥10 μm).
- 2. Crack closure (plasticity and surface roughness induced).
- 3. Scale effect (crack size relative to microstructure dimension).

"fatigue crack growth modelling"

Some Experimental Observations

Some Experimental Observations

Some Experimental Observations

Failure of Stress Intensity Factor to Correlate Crack Growth Rates

Correlating Parameter

- (i) Failure of similitude
- (ii) Failure of continuum hypothesis

Correlating Parameter

Stage II growth by plastic blunting at crack tip (Laird, 1967)

Correlating Parameter for Small Cracks

Un-deformed geometry

Deformed geometry

Correlating Parameter for Small Cracks

Cyclic Crack-tip Plastic Bunting

Crack Closure under Cyclic Loading

Modified Crack Closure Solution

- Simulating three-dimensional plastic deformation near crack tip using two-dimensional Dugdale model.
- Two plastic constraint factors.

Modified Crack Closure Solution

- Two plastic constraint factors: determined by matching analytical and FE solutions.
- Input to modified FASTRAN for spectrum loading.

- Small crack emanating from notch plastic zone
 - Cyclic Notch Plasticity
 - Small Cracks
 - Non-SSY
 - Plastic Strain Controlled
 - Microstructure

Applied Strain

Elasto-plastic Stress

Stress-based Dugdale Models I & II

Front face yielding

Strain-based Dugdale Model

$$\int_{0}^{c_{3}} D(t)Q(x,t)dt = \begin{cases} -\sigma_{yy}(x)/E' & (0 < x < a) \\ [-\sigma_{yy}(x) + \sigma_{0})]/E' & (a < x < c_{3}) \end{cases}$$

$$\int_0^{c_3} D(t)Q(x,t)dt = \begin{cases} -\varepsilon_{ep}(x) & (0 < x < a) \\ -\varepsilon_{ep}(x) + \sigma_0/E_s(x) & (a < x < c_3) \end{cases}$$

$$E_s(x) = \sigma_{ep}(x)/\varepsilon_{ep}(x)$$

Load history of pre-straining

Crack Growth Through Residual Stress Field

Surface enhancement techniques

- Shot peening
- Laser shock
- Low plasticity burnishing

No credit is taken of the benefit of residual stresses

- Quality assurance.
- Stability of residual stresses under mechanical or thermal loading.
- Fatigue crack growth: influence of flaws.

Experiments

Aluminum alloy (7050)

- Etched
- Shot peened

Loading

- FALSTAFF
- Modified sequence representative of F/A-18

Experimental Results

F/A-18 sequence

FALSTAFF

Crack Growth Results

Fractographic Results

Un-peened

Shot peened

Fatigue Crack Growth Prediction

- Correlating parameter;
 - Cyclic crack-tip opening displacement.
- Cycle-by-cycle crack closure analysis;
 - Effect of residual stress.
 - Modified Dugdale model (e.g., FASTRAN).
- Material database;
 - da/dN .vs. correlating parameter (threshold for small cracks).
- Initial flaw size;
 - Fractographic analysis.

RESIDUAL STRESS

$$\sigma_R^{(i)}(z) = \sigma_{R,\max}^{(i)} \frac{1 - (z/d)^2}{[1 + (z/d)^2]^2}$$

$$\int_0^\infty \boldsymbol{\sigma}_R^{(i)}(z)dz = \mathbf{0}$$

Initial Flaws due to Shot Peening

Stability of Residual Stresses

Stress shake-down:

- Elastic shake-down: zero alternating plasticity.
- Plastic shake-down: alternating plasticity (zero mean stress).

Compressive residual stress

- High compressive load may cause elastic or plastic shakedown.
- Rate of shake-down depends on material properties and applied loads.

Relaxation of Residual Stress

Perfectly plastic material

Cyclic Deformation

7050 Aluminium

Relaxation of Residual Stress

Non-linear Kinematic hardening

Distribution of Initial Flaws

Material Database

Threshold value is determined so that the initial flaw does not propagate at fatigue limit.

Input:

- (1) Flaw size
- (2) Fatigue limit

Threshold Determination

Influence of Residual Stress on Crack Growth

$$K^{R} = \int_{0}^{a} \int_{0}^{\pi} \sigma_{R}(r \sin \theta) G(r, \theta) r d\theta dr$$

$$G(r,\theta) = \frac{\sqrt{a^{2} - r^{2}}}{\pi \sqrt{\pi a}} \left[\frac{1}{a^{2} + r^{2} - 2ar\sin\theta} + \frac{1}{a^{2} + r^{2} + 2ar\sin\theta} \right]$$

$$f = \frac{K^R}{2\sigma_{R\max}\sqrt{a/\pi}}$$

Crack Growth Curves

Comparison of Prediction with Experimental Data

Summary

- Correlating parameter for short crack growth.
- Strain-based cohesive zone model for strain-controlled crack growth at notch root.
- Modified crack closure model for large-scale yielding.
- Analytical method for characterizing the relaxation rate and the final distribution of residual stresses.
- Predictive tools for assessing effect of surface enhancement.